Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Respir Care ; 68(3): 400-407, 2023 03.
Article in English | MEDLINE | ID: covidwho-2202184

ABSTRACT

BACKGROUND: Lung ultrasound (LUS) can be used to monitor critically ill patients with COVID-19, but the optimal number of examined lung zones is disputed. METHODS: This was a prospective observational study. The objective was to investigate whether concise (6 zones) and extended (12 zones) LUS scoring protocols are clinically equivalent in critically ill ICU subjects with COVID-19. The primary outcome of this study was (statistical) agreement between concise and extended LUS score index evaluated in both supine and prone position. Agreement was determined using correlation coefficients and Bland-Altman plots to detect systematic differences between protocols. Secondary outcomes were difference between LUS score index in supine and prone position using similar methods. RESULTS: We included 130 LUS examinations in 40 subjects (mean age 69.0 ± 8.5y, 75% male). Agreement between concise and extended LUS score index had no clinically relevant constant or proportional bias and limits of agreement were below the smallest detectable change. Across position changes, supine LUS score index was 8% higher than prone LUS score index and had limits above the smallest detectable change, indicating true LUS score index differences between protocols may occur due to the position change itself. Lastly, inter-rater and intra-rater agreement were very good. CONCLUSIONS: Concise LUS was equally informative as extended LUS for monitoring critically ill subjects with COVID-19 in supine or prone position. Clinicians can monitor patients undergoing position changes but must be wary that LUS score index alterations may result from the position change itself rather than disease progression or clinical improvement.


Subject(s)
COVID-19 , Humans , Male , Middle Aged , Aged , Female , Critical Illness , Lung/diagnostic imaging , Prospective Studies , Ultrasonography/methods
2.
Ann Intensive Care ; 12(1): 99, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2079546

ABSTRACT

BACKGROUND: For mechanically ventilated critically ill COVID-19 patients, prone positioning has quickly become an important treatment strategy, however, prone positioning is labor intensive and comes with potential adverse effects. Therefore, identifying which critically ill intubated COVID-19 patients will benefit may help allocate labor resources. METHODS: From the multi-center Dutch Data Warehouse of COVID-19 ICU patients from 25 hospitals, we selected all 3619 episodes of prone positioning in 1142 invasively mechanically ventilated patients. We excluded episodes longer than 24 h. Berlin ARDS criteria were not formally documented. We used supervised machine learning algorithms Logistic Regression, Random Forest, Naive Bayes, K-Nearest Neighbors, Support Vector Machine and Extreme Gradient Boosting on readily available and clinically relevant features to predict success of prone positioning after 4 h (window of 1 to 7 h) based on various possible outcomes. These outcomes were defined as improvements of at least 10% in PaO2/FiO2 ratio, ventilatory ratio, respiratory system compliance, or mechanical power. Separate models were created for each of these outcomes. Re-supination within 4 h after pronation was labeled as failure. We also developed models using a 20 mmHg improvement cut-off for PaO2/FiO2 ratio and using a combined outcome parameter. For all models, we evaluated feature importance expressed as contribution to predictive performance based on their relative ranking. RESULTS: The median duration of prone episodes was 17 h (11-20, median and IQR, N = 2632). Despite extensive modeling using a plethora of machine learning techniques and a large number of potentially clinically relevant features, discrimination between responders and non-responders remained poor with an area under the receiver operator characteristic curve of 0.62 for PaO2/FiO2 ratio using Logistic Regression, Random Forest and XGBoost. Feature importance was inconsistent between models for different outcomes. Notably, not even being a previous responder to prone positioning, or PEEP-levels before prone positioning, provided any meaningful contribution to predicting a successful next proning episode. CONCLUSIONS: In mechanically ventilated COVID-19 patients, predicting the success of prone positioning using clinically relevant and readily available parameters from electronic health records is currently not feasible. Given the current evidence base, a liberal approach to proning in all patients with severe COVID-19 ARDS is therefore justified and in particular regardless of previous results of proning.

4.
Crit Care ; 26(1): 265, 2022 09 05.
Article in English | MEDLINE | ID: covidwho-2009441

ABSTRACT

BACKGROUND: Adequate antibiotic dosing may improve outcomes in critically ill patients but is challenging due to altered and variable pharmacokinetics. To address this challenge, AutoKinetics was developed, a decision support system for bedside, real-time, data-driven and personalised antibiotic dosing. This study evaluates the feasibility, safety and efficacy of its clinical implementation. METHODS: In this two-centre randomised clinical trial, critically ill patients with sepsis or septic shock were randomised to AutoKinetics dosing or standard dosing for four antibiotics: vancomycin, ciprofloxacin, meropenem, and ceftriaxone. Adult patients with a confirmed or suspected infection and either lactate > 2 mmol/L or vasopressor requirement were eligible for inclusion. The primary outcome was pharmacokinetic target attainment in the first 24 h after randomisation. Clinical endpoints included mortality, ICU length of stay and incidence of acute kidney injury. RESULTS: After inclusion of 252 patients, the study was stopped early due to the COVID-19 pandemic. In the ciprofloxacin intervention group, the primary outcome was obtained in 69% compared to 3% in the control group (OR 62.5, CI 11.4-1173.78, p < 0.001). Furthermore, target attainment was faster (26 h, CI 18-42 h, p < 0.001) and better (65% increase, CI 49-84%, p < 0.001). For the other antibiotics, AutoKinetics dosing did not improve target attainment. Clinical endpoints were not significantly different. Importantly, higher dosing did not lead to increased mortality or renal failure. CONCLUSIONS: In critically ill patients, personalised dosing was feasible, safe and significantly improved target attainment for ciprofloxacin. TRIAL REGISTRATION: The trial was prospectively registered at Netherlands Trial Register (NTR), NL6501/NTR6689 on 25 August 2017 and at the European Clinical Trials Database (EudraCT), 2017-002478-37 on 6 November 2017.


Subject(s)
COVID-19 , Sepsis , Shock, Septic , Adult , Anti-Bacterial Agents , Ciprofloxacin/therapeutic use , Critical Illness/therapy , Humans , Pandemics , Sepsis/drug therapy , Shock, Septic/drug therapy
5.
Crit Care ; 26(1): 236, 2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-2002213

ABSTRACT

BACKGROUND: The COVID-19 pandemic presented major challenges for critical care facilities worldwide. Infections which develop alongside or subsequent to viral pneumonitis are a challenge under sporadic and pandemic conditions; however, data have suggested that patterns of these differ between COVID-19 and other viral pneumonitides. This secondary analysis aimed to explore patterns of co-infection and intensive care unit-acquired infections (ICU-AI) and the relationship to use of corticosteroids in a large, international cohort of critically ill COVID-19 patients. METHODS: This is a multicenter, international, observational study, including adult patients with PCR-confirmed COVID-19 diagnosis admitted to ICUs at the peak of wave one of COVID-19 (February 15th to May 15th, 2020). Data collected included investigator-assessed co-infection at ICU admission, infection acquired in ICU, infection with multi-drug resistant organisms (MDRO) and antibiotic use. Frequencies were compared by Pearson's Chi-squared and continuous variables by Mann-Whitney U test. Propensity score matching for variables associated with ICU-acquired infection was undertaken using R library MatchIT using the "full" matching method. RESULTS: Data were available from 4994 patients. Bacterial co-infection at admission was detected in 716 patients (14%), whilst 85% of patients received antibiotics at that stage. ICU-AI developed in 2715 (54%). The most common ICU-AI was bacterial pneumonia (44% of infections), whilst 9% of patients developed fungal pneumonia; 25% of infections involved MDRO. Patients developing infections in ICU had greater antimicrobial exposure than those without such infections. Incident density (ICU-AI per 1000 ICU days) was in considerable excess of reports from pre-pandemic surveillance. Corticosteroid use was heterogenous between ICUs. In univariate analysis, 58% of patients receiving corticosteroids and 43% of those not receiving steroids developed ICU-AI. Adjusting for potential confounders in the propensity-matched cohort, 71% of patients receiving corticosteroids developed ICU-AI vs 52% of those not receiving corticosteroids. Duration of corticosteroid therapy was also associated with development of ICU-AI and infection with an MDRO. CONCLUSIONS: In patients with severe COVID-19 in the first wave, co-infection at admission to ICU was relatively rare but antibiotic use was in substantial excess to that indication. ICU-AI were common and were significantly associated with use of corticosteroids. Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021).


Subject(s)
COVID-19 , Coinfection , Pneumonia, Bacterial , Pneumonia, Viral , Adrenal Cortex Hormones/therapeutic use , Adult , Anti-Bacterial Agents/therapeutic use , COVID-19/complications , COVID-19/epidemiology , COVID-19 Testing , Coinfection/drug therapy , Coinfection/epidemiology , Critical Illness , Humans , Intensive Care Units , Pandemics , Pneumonia, Bacterial/drug therapy , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology
6.
Int J Obes (Lond) ; 46(10): 1801-1807, 2022 10.
Article in English | MEDLINE | ID: covidwho-1937412

ABSTRACT

BACKGROUND/OBJECTIVES: Patients affected by obesity and Coronavirus disease 2019, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appear to have a higher risk for intensive care (ICU) admission. A state of low-grade chronic inflammation in obesity has been suggested as one of the underlying mechanisms. We investigated whether obesity is associated with differences in new inflammatory biomarkers mid-regional proadrenomedullin (MR-proADM), C-terminal proendothelin-1 (CT-proET-1), and clinical outcomes in critically ill patients with SARS-CoV-2 pneumonia. SUBJECTS/METHODS: A total of 105 critically ill patients with SARS-CoV-2 pneumonia were divided in patients with obesity (body mass index (BMI) ≥ 30 kg/m2, n = 42) and patients without obesity (BMI < 30 kg/m2, n = 63) and studied in a retrospective observational cohort study. MR-proADM, CT-proET-1 concentrations, and conventional markers of white blood count (WBC), C-reactive protein (CRP), and procalcitonin (PCT) were collected during the first 7 days. RESULTS: BMI was 33.5 (32-36.1) and 26.2 (24.7-27.8) kg/m2 in the group with and without obesity. There were no significant differences in concentrations MR-proADM, CT-proET-1, WBC, CRP, and PCT at baseline and the next 6 days between patients with and without obesity. Only MR-proADM changed significantly over time (p = 0.039). Also, BMI did not correlate with inflammatory biomarkers (MR-proADM rho = 0.150, p = 0.125, CT-proET-1 rho = 0.179, p = 0.067, WBC rho = -0.044, p = 0.654, CRP rho = 0.057, p = 0.564, PCT rho = 0.022, p = 0.842). Finally, no significant differences in time on a ventilator, ICU length of stay, and 28-day mortality between patients with or without obesity were observed. CONCLUSIONS: In critically ill patients with confirmed SARS-CoV-2 pneumonia, obesity was not associated with differences in MR-proADM, and CT-proET-1, or impaired outcome. TRIAL REGISTRATION: Netherlands Trial Register, NL8460.


Subject(s)
Adrenomedullin , COVID-19 , Endothelin-1 , Obesity , Peptide Fragments , Protein Precursors , SARS-CoV-2 , Adrenomedullin/blood , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Critical Care , Critical Illness , Disease Progression , Endothelin-1/blood , Humans , Obesity/complications , Patient Admission , Peptide Fragments/blood , Procalcitonin/blood , Prognosis , Protein Precursors/blood , Retrospective Studies
7.
J Antimicrob Chemother ; 77(7): 2038-2039, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1774397
8.
Intensive Care Med ; 48(3): 374-375, 2022 03.
Article in English | MEDLINE | ID: covidwho-1718652
10.
Crit Care Explor ; 3(10): e0555, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1475865

ABSTRACT

OBJECTIVES: As coronavirus disease 2019 is a novel disease, treatment strategies continue to be debated. This provides the intensive care community with a unique opportunity as the population of coronavirus disease 2019 patients requiring invasive mechanical ventilation is relatively homogeneous compared with other ICU populations. We hypothesize that the novelty of coronavirus disease 2019 and the uncertainty over its similarity with noncoronavirus disease 2019 acute respiratory distress syndrome resulted in substantial practice variation between hospitals during the first and second waves of coronavirus disease 2019 patients. DESIGN: Multicenter retrospective cohort study. SETTING: Twenty-five hospitals in the Netherlands from February 2020 to July 2020, and 14 hospitals from August 2020 to December 2020. PATIENTS: One thousand two hundred ninety-four critically ill intubated adult ICU patients with coronavirus disease 2019 were selected from the Dutch Data Warehouse. Patients intubated for less than 24 hours, transferred patients, and patients still admitted at the time of data extraction were excluded. MEASUREMENTS AND MAIN RESULTS: We aimed to estimate between-ICU practice variation in selected ventilation parameters (positive end-expiratory pressure, Fio2, set respiratory rate, tidal volume, minute volume, and percentage of time spent in a prone position) on days 1, 2, 3, and 7 of intubation, adjusted for patient characteristics as well as severity of illness based on Pao2/Fio2 ratio, pH, ventilatory ratio, and dynamic respiratory system compliance during controlled ventilation. Using multilevel linear mixed-effects modeling, we found significant (p ≤ 0.001) variation between ICUs in all ventilation parameters on days 1, 2, 3, and 7 of intubation for both waves. CONCLUSIONS: This is the first study to clearly demonstrate significant practice variation between ICUs related to mechanical ventilation parameters that are under direct control by intensivists. Their effect on clinical outcomes for both coronavirus disease 2019 and other critically ill mechanically ventilated patients could have widespread implications for the practice of intensive care medicine and should be investigated further by causal inference models and clinical trials.

11.
Trials ; 22(1): 546, 2021 Aug 18.
Article in English | MEDLINE | ID: covidwho-1367681

ABSTRACT

BACKGROUND: High-dose intravenous vitamin C directly scavenges and decreases the production of harmful reactive oxygen species (ROS) generated during ischemia/reperfusion after a cardiac arrest. The aim of this study is to investigate whether short-term treatment with a supplementary or very high-dose intravenous vitamin C reduces organ failure in post-cardiac arrest patients. METHODS: This is a double-blind, multi-center, randomized placebo-controlled trial conducted in 7 intensive care units (ICUs) in The Netherlands. A total of 270 patients with cardiac arrest and return of spontaneous circulation will be randomly assigned to three groups of 90 patients (1:1:1 ratio, stratified by site and age). Patients will intravenously receive a placebo, a supplementation dose of 3 g of vitamin C or a pharmacological dose of 10 g of vitamin C per day for 96 h. The primary endpoint is organ failure at 96 h as measured by the Resuscitation-Sequential Organ Failure Assessment (R-SOFA) score at 96 h minus the baseline score (delta R-SOFA). Secondary endpoints are a neurological outcome, mortality, length of ICU and hospital stay, myocardial injury, vasopressor support, lung injury score, ventilator-free days, renal function, ICU-acquired weakness, delirium, oxidative stress parameters, and plasma vitamin C concentrations. DISCUSSION: Vitamin C supplementation is safe and preclinical studies have shown beneficial effects of high-dose IV vitamin C in cardiac arrest models. This is the first RCT to assess the clinical effect of intravenous vitamin C on organ dysfunction in critically ill patients after cardiac arrest. TRIAL REGISTRATION: ClinicalTrials.gov NCT03509662. Registered on April 26, 2018. https://clinicaltrials.gov/ct2/show/NCT03509662 European Clinical Trials Database (EudraCT): 2017-004318-25. Registered on June 8, 2018. https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-004318-25/NL.


Subject(s)
Post-Cardiac Arrest Syndrome , Ascorbic Acid , Double-Blind Method , Humans , Multicenter Studies as Topic , Organ Dysfunction Scores , Randomized Controlled Trials as Topic , Treatment Outcome
12.
J Crit Care ; 66: 173-180, 2021 12.
Article in English | MEDLINE | ID: covidwho-1338432

ABSTRACT

PURPOSE: We assessed the ability of mid-regional proadrenomedullin (MR-proADM) and C-terminal proendothelin-1 (CT-proET-1) to predict 28-day mortality in critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. METHODS: Biomarkers were collected during the first seven days in this prospective observational cohort study. We investigated the relationship between biomarkers and mortality in a multivariable Cox regression model adjusted for age and SOFA score. RESULTS: In 105 critically ill patients with confirmed SARS-CoV-2 pneumonia 28-day mortality was 28.6%. MR-proADM and CT-proET-1 were significantly higher in 28-day non-survivors at baseline and over time. ROC curves revealed high accuracy to identify non-survivors for baseline MR-proADM and CT-proET-1, AUC 0.84, (95% CI 0.76-0.92), p < 0.001 and 0.79, (95% CI 0.69-0.89), p < 0.001, respectively. The AUC for prediction of 28-day mortality for MR-proADM and CT-proET-1 remained high over time. MR-proADM ≥1.57 nmol/L and CT-proET-1 ≥ 111 pmol/L at baseline were significant predictors for 28-day mortality (HR 6.80, 95% CI 3.12-14.84, p < 0.001 and HR 3.72, 95% CI 1.71-8.08, p 0.01). CONCLUSION: Baseline and serial MR-proADM and CT-proET-1 had good ability to predict 28-day mortality in critically ill patients with SARS-CoV-2 pneumonia. TRIAL REGISTRATION: NEDERLANDS TRIAL REGISTER, NL8460.


Subject(s)
COVID-19 , Pneumonia , Adrenomedullin , Biomarkers , Critical Illness , Endothelin-1 , Endothelium , Humans , Peptide Fragments , Prognosis , Prospective Studies , Protein Precursors , SARS-CoV-2
13.
Intensive Care Med Exp ; 9(1): 1, 2021 Jan 25.
Article in English | MEDLINE | ID: covidwho-1045593

ABSTRACT

BACKGROUND: Lung ultrasound can adequately monitor disease severity in pneumonia and acute respiratory distress syndrome. We hypothesize lung ultrasound can adequately monitor COVID-19 pneumonia in critically ill patients. METHODS: Adult patients with COVID-19 pneumonia admitted to the intensive care unit of two academic hospitals who underwent a 12-zone lung ultrasound and a chest CT examination were included. Baseline characteristics, and outcomes including composite endpoint death or ICU stay > 30 days were recorded. Lung ultrasound and CT images were quantified as a lung ultrasound score involvement index (LUSI) and CT severity involvement index (CTSI). Primary outcome was the correlation, agreement, and concordance between LUSI and CTSI. Secondary outcome was the association of LUSI and CTSI with the composite endpoints. RESULTS: We included 55 ultrasound examinations in 34 patients, which were 88% were male, with a mean age of 63 years and mean P/F ratio of 151. The correlation between LUSI and CTSI was strong (r = 0.795), with an overall 15% bias, and limits of agreement ranging - 40 to 9.7. Concordance between changes in sequentially measured LUSI and CTSI was 81%. In the univariate model, high involvement on LUSI and CTSI were associated with a composite endpoint. In the multivariate model, LUSI was the only remaining independent predictor. CONCLUSIONS: Lung ultrasound can be used as an alternative for chest CT in monitoring COVID-19 pneumonia in critically ill patients as it can quantify pulmonary involvement, register changes over the course of the disease, and predict death or ICU stay > 30 days. TRIAL REGISTRATION: NTR, NL8584. Registered 01 May 2020-retrospectively registered, https://www.trialregister.nl/trial/8584.

14.
J Crit Care ; 60: 116-119, 2020 12.
Article in English | MEDLINE | ID: covidwho-695598

ABSTRACT

OBJECTIVES: To assess the effect on healthcare professional emergency response time and safety of small compared to large clog size. DESIGN: Randomized controlled trial. SETTING: The intensive care unit of a single university medical centre in The Netherlands. PARTICIPANTS: Intensive care medicine professionals. INTERVENTIONS: Participants were randomized to wear European size 38 clogs (US male size 6½, US female size 7½) or European size 47 clogs (US male size 13½, US female size 14½) clogs and were required to run a 125 m course from the coffee break room to the elevator providing access to the emergency department. MAIN OUTCOME MEASURES: The primary outcome was the time to complete the running course. Height, shoe size, self-described fitness, age and staff category were investigated as possible effect modifiers. Secondary endpoints were reported clog comfort and suspected unexpected clog-related adverse events (SUCRAEs). RESULTS: 50 participants were randomized (25 to European size 38 clogs and 25 to size 47 clogs). Mean age was 37 years (SD 12) and 29 participants (58%) were female. The primary outcome was 4.4 s (95% CI -7.1; -1.6) faster in the size 5 clogs group compared to the size 12 clogs group. This effect was not modified by any of the predefined participant characteristics. No differences were found in reported clog comfort or SUCRAEs. CONCLUSIONS: European size 38 clogs lead to faster emergency response times than size 47 clogs. TRIAL REGISTRATION: NCT04406220.


Subject(s)
Health Personnel , Intensive Care Units , Reaction Time , Running , Shoes , Adult , Critical Care , Emergency Service, Hospital , Female , Humans , Male , Middle Aged , Netherlands
SELECTION OF CITATIONS
SEARCH DETAIL